Abstract

The problem of the motion of a magnetic solid in a constant uniform magnetic field, taking gyromagnetic effects into account, is considered. The equations of motion are derived, the Hamiltonian structure is studied, and the cases of integrability indicated. Certain classes of stationary motions are studied and their stability examined. The gyromagnetic effects arise because the electrons have magnetic and mechanical spin moments /1/. The rotation of the body causes it to become magnetized (the Barnett effect) and when a freely suspended body is magnetized, it begins to rotate (the Einsteinde Haas effect). It is found that gyromagnetic phenomena must be taken into account when analysing the motion of gyroscopic precision systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.