Abstract

This article presents the methodology for the Pt/Al and Pt/Al nanolaminates production as well as Pt + Al composites using two magnetrons by preparing the oxide-metal composites through high temperature oxidation of nanofilms deposited by PVD method on a metal substrate. In this article, we described the nanostructures obtained as a result of PVD technology. The applied layers were oxidized at a temperature of 860 °C under Ar + O2 for 48 h. SEM surface analysis of the obtained nanolaminates showed that the base of the oxidized laminates was covered with a fine wafer and whisker structure with an anisotropic growth orientation. Oxidation of composite layers provided the growth of chaotically oriented and mutually penetrable whiskers and small crystals. Analysis of nanolayers by the TEM technique indicated that the growth of oxide crystals leads to the dissipation of Pt particles. The comparison of oxide layers obtained with the Pt/Al system with oxide layers obtained with Pt + Al composite nanofilms indicates that those obtained through the oxidation of nanofilms shows a greater surface development. This is due to the partial covering of Pt particles through the Al layer, which causes a very strong fragmentation of the Pt nanofilms occurring during oxidation. During the oxidation in the entire volume of nanofilms, strong stresses are created that cause numerous nano-cracks, which promotes the expansion of the surface and its high activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.