Abstract

The determination of the anisotropy of materials’ microstructure and morphology (pore space) in diesel particulate filter (DPF) materials is an important problem to solve, since such anisotropy determines the mechanical, thermal, and filtration properties of such materials. Through the use of a dedicated (and simple) segmentation algorithm, it is shown how to exploit the information yielded by 3D X‐ray computed tomography data to quantify the morphological anisotropy. It is also correlated that such anisotropy of the pore space Such anisotropy of the pore space is also correlated with the microstructure and crystallographic anisotropy of the material in several showcases: a microstructurally isotropic material, such as SiC, and some morphologically and microstructurally anisotropic cordierite materials. In the later case, the finer the grain size, the more isotropic the microstructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.