Abstract

In this paper we study the structure of the monoid Iℕn ∞ of cofinite partial isometries of the n-th power of the set of positive integers ℕ with the usual metric for a positive integer n > 2. We describe the group of units and the subset of idempotents of the semigroup Iℕn ∞, the natural partial order and Green's relations on Iℕn ∞. In particular we show that the quotient semigroup Iℕn ∞/Cmg, where Cmg is the minimum group congruence on Iℕn ∞, is isomorphic to the symmetric group Sn and D = J in Iℕn ∞. Also, we prove that for any integer n ≥2 the semigroup Iℕn ∞ is isomorphic to the semidirect product Sn ×h(P∞(Nn); U) of the free semilattice with the unit (P∞(Nn); U) by the symmetric group Sn.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.