Abstract
We study the moments and the distribution of the discrete Choquet integral when regarded as a real function of a random sample drawn from a continuous distribution. Since the discrete Choquet integral includes weighted arithmetic means, ordered weighted averaging functions, and lattice polynomial functions as particular cases, our results encompass the corresponding results for these aggregation functions. After detailing the results obtained in [J.-L. Marichal, I. Kojadinovic, Distribution functions of linear combinations of lattice polynomials from the uniform distribution, Statistics & Probability Letters 78 (2008) 985–991] in the uniform case, we present results for the standard exponential case, show how approximations of the moments can be obtained for other continuous distributions such as the standard normal, and elaborate on the asymptotic distribution of the Choquet integral. The results presented in this work can be used to improve the interpretation of discrete Choquet integrals when employed as aggregation functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.