Abstract

The previously proposed (Rodin, 2002) method for calculating the microphysical properties of spatially inhomogeneous rarefied aerosol media with mixing using the lowest-order moments of the size distribution is generalized to particle coagulation. We show that when the problem is formulated in terms of moments, all of the solutions admitted by the stochastic coagulation equation lie within a narrow range whose boundaries can be determined by means of quadratic programming. We discuss the choice of an optimal solution within this range and compare the moment method with the results of our computations by the classical finite-difference method using a model of photochemical aerosols in Titan's atmosphere as an example. The moment method allows the efficiency of microphysical computations to be significantly increased by using precomputed low-dimension interpolation tables. It can be used to construct self-consistent models for the globular circulation of planetary atmospheres.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call