Abstract

Alterations to the standard genetic code have been found in both prokaryotes and eukaryotes. This finding demolished the central dogma of molecular biology, postulated by Crick in 1968, of an immutable and universal genetic code, and raised the question of how organisms survive genetic code alterations. Recent studies suggest that genetic code alterations are driven by selection using a mechanism that requires translational ambiguity. In C. albicans, the leucine CUG codon is decoded as serine through structural alterations of the translational machinery, in particular, of Ser-tRNACAG, which has dual identity and novel decoding properties. Here, we review the molecular mechanism of CUG reassignment, focusing on the structural change of the translational machinery and on the impact that such alteration had on the evolution of the Candida albicans genome.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call