Abstract

The amount of water-accessible-surface-area, WASA, buried upon protein–protein association is a good measure of the non-covalent complex stability in water; however, the dependence of the binding Gibbs free energy change upon buried WASA proves to be not trivial. We assign a precise physicochemical role to buried WASA in the thermodynamics of non-covalent association and perform close scrutiny of the contributions favoring and those contrasting protein–protein association. The analysis indicates that the decrease in solvent-excluded volume, an entropic effect, described by means of buried WASA, is the molecular driving force of non-covalent association in water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.