Abstract

We show that the moduli space $\mathcal{M}_{g,1}^N$ of pointed algebraic curves of genus $g$ with a given numerical semigroup $N$ is an irreducible rational variety if $N$ is generated by less than five elements for low genus ($ g \leq 6$) except one case. As a corollary to this result, we get a computational proof of the rationality of the moduli space $\mathcal{M}_{g,1}$ of pointed algebraic curves of genus $g$ for $1 \leq g \leq 3$. If $g \leq 5$, we also have that $\mathcal{M}_{g,1}^N$ is an irreducible rational variety for any semigroup $N$ except two cases. It is known that such a moduli space $\mathcal{M}_{g,1}^N$ is non-empty for $g \leq 7$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.