Abstract
We study the moduli space of congruence classes of isometric surfaces with the same mean curvature in 4-dimensional space forms. Having the same mean curvature means that there exists a parallel vector bundle isometry between the normal bundles that preserves the mean curvature vector fields. We prove that if both Gauss lifts of a compact surface to the twistor bundle are not vertically harmonic, then there exist at most three non-trivial congruence classes. We show that surfaces with a vertically harmonic Gauss lift possess a holomorphic quadratic differential, yielding thus a Hopf-type theorem. We prove that such surfaces allow locally a one-parameter family of isometric deformations with the same mean curvature. This family is trivial only if the surface is superconformal. For such compact surfaces with non-parallel mean curvature, we prove that the moduli space is the disjoint union of two sets, each one being either finite, or a circle. In particular, for surfaces in $$\mathbb {R}^4$$ we prove that the moduli space is a finite set, under a condition on the Euler numbers of the tangent and normal bundles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.