Abstract
A penetration-based gear contact model for accurate and numerically efficient tooth contact analysis of spiral bevel gears is used to investigate the simulation of gear alignment errors. The developed gear contact model with surfaces of roll angles, computed for the gear pair’s tooth flanks in the absence of misalignments, is shown to be well capable of predicting a misaligned gear pair’s contact performance. In this approach the contact curves on the three-dimensional tooth flanks are efficiently computed from the surfaces of roll angles, while the flank mismatch is directly determined by the instantaneous position and orientation of the gear tooth surfaces without the need for an ease-off topography. The latter provides a higher robustness to configuration variations. Finally, a novel strategy to parametrically redefine the gear contact element’s surfaces of roll angles in function of a gear pair’s instantaneous misaligned state, is developed to further increase the accuracy of the contact algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.