Abstract
The subject of analysis is the bending of elastic plates exhibiting a nonhomogeneous periodic structure and/or a periodically variable thickness in a certain direction parallel to the plate's midplane. The fundamental modelling problem is how to obtain an effective 2D-model of a plate under consideration, i.e., a 2D-model represented by PDEs with constant coefficients. This problem for periodic plates has been solved independently in [5] and [10], using asymptotic homogenization. However, homogenization neglects dynamic phenomena related to the plate's rotational inertia and cannot be applied to the analysis of higher-order vibration frequences. The main aim of this contribution is to formulate a new non-asymptotic effective 2D-model of a periodic plate which is free from the mentioned drawbacks and describes the dynamic behaviour of plates having the thickness of the order of the period length. The proposed model is applied to the analysis of some vibration problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.