Abstract

The spectral map of the nonlinear absorption coefficient of glass-copper nanocomposite in the pump-probe scheme constructed with the use of a simple anharmonic oscillator model reproduced well the spectral map obtained in the experiment. It is shown that spectral features in nonlinear response of glass-metal nanocomposites (GMN) can be engineered by varying the size of nanoparticles. The pronounced dependence of the magnitude of the third-order nonlinearity on the particles size explains the diversity of experimental data related to nonlinear optical response of GMNs in different experiments. Performed modeling proves that silver GMN demonstrate much sharper spectral dependence than copper ones due to strong frequency dependence of local field enhancement factor for silver nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.