Abstract

An analytical model of miscible flow in multi-component porous media is presented to demonstrate the influence of pore capacitance in extending diffusive tailing. Solute attenuation is represented naturally by accommodating diffusive and convective flux components in macropores amd micropores as elicited by the local solute concentration and velocity fields. A set of twin, coupled differential equations result from the Laplace transform and are solved simultaneously using a differential operator for one-dimensional flow geometry. The solutions in real space are achieved using numeric inversion. In addition, to represent more faithfully the dominant physical processes, this approach enables efficient and stable semi-analytical solution procedure of the coupled system that is significantly more complex than current capacitance type models. Parametric studies are completed to illustrate the ability of the model to represent sharp breakthrough and lengthy tailing, as well as investigating the form of the nested heterogeneity as a result of solute exchange between macropores and micropores. Data from a laboratory column experiment is examined using the present model and satisfactory agreement results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.