Abstract

A theoretical analysis of a hydrodynamic thrust bearing with a flexible-pad design is presented. The flexibility of pads improves the load-carrying capacity (LCC) of the bearing for a wide range of loading conditions by providing an adaptive surface deformation mechanism. To accurately predict the behavior of flexible-pad thrust bearings, an appropriate multi-physics model that considers the coupled mechanism between the lubricant pressure and the pad deformation is developed. An optimization study is carried out that uses hybrid harmony search algorithm and sequential quadratic programming to find the optimum geometrical parameters of the pad for maximum LCC. In addition, an approximate analytical method for optimum bearing design is presented. The results of simulations reveal that the flexible-pad bearings provide up to 30% more LCC in comparison with conventional inclined pad thrust bearings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.