Abstract

The model-based networked control for a class of singularly perturbed control systems with nonlinear uncertainties is addressed in this paper. The approximate slow and fast systems of the plant, which are obtained by omitting the nonlinear uncertainties, are used as a model to estimate the state behavior of the plant between transmission times. The stability of model-based networked control systems is investigated under the assumption that the controller/actuator is updated with the sensor information at constant time intervals. It is shown that there exists the allowable upper bound of the singular perturbation parameter such that the model-based networked control system is global exponentially stable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.