Abstract

A novel quantum mode coupling theory combined with a kinetic approach is developed for the description of collective density fluctuations in quantum liquids characterized by Boltzmann statistics. Three mode-coupling approximations are presented and applied to study the dynamic response of para-hydrogen near the triple point and normal liquid helium above the λ-transition. The theory is compared with experimental results and to the exact imaginary time data generated by path integral Monte Carlo simulations. While for liquid para-hydrogen the combination of kinetic and quantum mode-coupling theory provides semi-quantitative results for both short and long time dynamics, it fails for normal liquid helium. A discussion of this failure based on the ideal gas limit is presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call