Abstract

In his monograph Thermodynamics, I. Müller proves that for incompressible media the volume does not change with the temperature. This Müller paradox yields an incompatibility between experimental evidence and the entropy principle. This result has generated much debate within the mathematical and thermodynamical communities as to the basis of Boussinesq approximation in fluid dynamics. The aim of this paper is to prove that for an appropriate definition of incompressibility, as a limiting case of quasi-thermal-incompressible body, the entropy principle holds for pressures smaller than a critical pressure value. The main consequence of our result is the physically obvious one that for very large pressures, no body can be perfectly incompressible. The result is first established in the fluid case. In case of hyperelastic media subject to large deformations, the approach is similar, but with a suitable definition of the pressure associated with a convenient stress tensor decomposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.