Abstract
We consider a Markoff spectrum for the set of indefinite binary quadratic forms with real coefficients which represent zero non-trivially. As was done for the classical Markoff spectrum, we show that 1/3 is the largest accumulation point of the set and explicitly determine the countably infinite number of elements greater than 1/3. Unlike the situation for the classical Markoff spectrum, there is a countably infinite number of limit points greater than 1/3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.