Abstract
ABSTRACTA graph construction that produces a k-regular graph on n vertices for any choice of k ⩾ 3 and n = m(k + 1) for integer m ⩾ 2 is described. The number of Hamiltonians cycles in such graphs can be explicitly determined as a function of n and k, and empirical evidence is provided that suggests that this function gives a tight upper bound on the minimum number of Hamiltonian cycles in k-regular graphs on n vertices for k ⩾ 5 and n ⩾ k + 3. An additional graph construction for 4-regular graphs is described for which the number of Hamiltonian cycles is superior to the above function in the case when k = 4 and n ⩾ 11.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.