Abstract

The problem of minimizing the maximum transient energy growth is considered. This problem has importance in some fluid flow control problems and other classes of nonlinear systems. Conditions for the existence of static controllers that ensure strict dissipativity of the transient energy are established and an explicit parametrization of all such controllers is provided. It also is shown that by means of a Q-parametrization, the problem of minimizing the maximum transient energy growth can be posed as a convex optimization problem that can be solved by means of a Ritz approximation of the free parameter. By considering the transient energy growth at an appropriate sequence of discrete time points, the minimal maximum transient energy growth problem can be posed as a semidefinite program. The theoretical developments are demonstrated on a numerical example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.