Abstract
O-ROIG ⁄⁄ Abstract. Let R = k(x1;:::;xn) and let I be the ideal of n + 1 generically chosen forms of degrees d1 • ¢¢¢ • dn+1. We give the precise graded Betti numbers of R=I in the following cases: † n = 3. † n = 4 and P5=1 di is even. † n = 4, P 5=1 di is odd and d2 + d3 + d4 < d1 + d5 + 4. † n is even and all generators have the same degree, a, which is even. † ( Pn+1 i=1 di) i n is even and d2 + ¢¢¢ + dn < d1 + dn+1 + n. † ( P n+1 i=1 di) i n is odd, n ‚ 6 is even, d2 + ¢¢¢ + dn < d1 + dn+1 + n and d1 + ¢¢¢ + dn i dn+1 i n ? 0. We give very good bounds on the graded Betti numbers in many other cases. We also extend a result of M. Boij by giving the graded Betti numbers for a generic compressed Gorenstein algebra (i.e. one for which the Hilbert function is maximal given n and the socle degree) when n is even and the socle degree is large. A recurring theme is to examine when and why the minimal free resolution may be forced to have redundant summands. We conjecture that if the forms all have the same degree then there are no redundant summands, and we present some evidence for this conjecture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.