Abstract

The influence of isotropically directed deposition flux on the formation of the thin film microstructure at low temperatures is studied. For this purpose we have deposited TiO2 thin films by two different deposition techniques: reactive magnetron sputtering, in two different experimental configurations, and plasma enhanced chemical vapor deposition. The obtained results indicate that films grown under conditions where deposition particles do not possess a clear directionality, and in the absence of a relevant plasma/film interaction, present similar refractive indices no matter the deposition technique employed. The film morphology is also similar and consists of a granular surface topography and a columnarlike structure in the bulk whose diameter increases almost linearly with the film thickness. The deposition has been simulated by means of a Monte Carlo model, taking into account the main processes during growth. The agreement between simulations and experimental results indicates that the obtained microstructures are a consequence of the incorporation of low-energy, isotropically directed, deposition particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.