Abstract

Microforming is defined as the process of production of metallic micro-parts with at least two dimensions in sub-millimeter range. Many of these microforming processes have been investigated in laboratory-scale, which is not suitable for industrial applications. In this work, the feasibility of producing copper micro-pins using a novel progressive microforming process is demonstrated. This process has a good potential for mass production of micro-parts. The material flow behavior and the microstructure of the formed micro-pins were investigated by means of optical microscopy and simulation. From this study of material flow behavior with respect to different process conditions (die diameter, die design and punch diameters used), it will be shown how the respective material flow behavior in the progressive forming process influenced the microstructure evolution in the formed micro-pin. It was found in the experimental results that there is a soft zone on the micro-pins surface under specific process conditions. The microhardness results were consistent with the microstructural observations. Simulation was employed to understand the material flow direction under the punch during the microforming process and evaluate the position of the neutral zone in the disk-shape head of the micro-pin produced. This understanding of the neutral zone position with relation to the metal dead-zone as well as the material flow behavior was necessary to explain the dead-zone leakage in the microstructure and the occurrence of the soft zone. By decreasing the punch to die diameter ratio, and also choosing a die without entrance fillet radius, it was shown that the soft zones at the pin surface could be either minimized or entirely removed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call