Abstract

A microscopic model of the time-resolved Stokes shift is developed. The model calculates the solvation dynamics by combining the atomic resolution of the solute structure with dipolar dynamics from the polarization structure factors of the homogeneous solvent. Calculations are made for coumarin 153 and quinoxaline optical dyes with atomic geometries and charge distributions taken from quantum calculations. Stokes shift dynamics is calculated and compared to experiment in high-temperature acetonitrile and methanol and in low-temperature 2-methyl-tetrahydrofurane using dielectric relaxation data from experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call