Abstract

The amino acid lysine has been shown to prevent water crystallization at low temperatures in saturated aqueous solutions [S. Cerveny and J. Swenson, Phys. Chem. Chem. Phys., 2014, 16, 22382-22390]. Here, we investigate two ratios of water and lysine (5.4 water molecules per lysine (saturated) and 11 water molecules per lysine) by means of the complementary use of computer simulations and neutron diffraction. By performing a detailed structural analysis we have been able to explain the anti-freeze properties of lysine by the strong hydrogen bond interactions of interstitial water molecules with lysine that prevent them from forming crystalline seeds. Additional water molecules beyond the 1 : 5.4 proportion are no longer tightly bonded to lysine and therefore are free to form crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.