Abstract

The heat and mass transfer due to the steady laminar and incompressible micropolar fluid flow through a rectangular duct with the slip flow and convective boundary conditions are numerically calculated. The fluid moves under an external magnetic field applied on a plane perpendicular to the axis of the duct. The governing nonlinear partial differential equations of momentum, microrotation, induction, and the energy are solved simultaneously by the finite difference method. The effect of various numbers and parameters such as Reynolds, magnetic Reynolds, Hartmann, coupling, Brinkman numbers, the slip flow and convective parameters are presented in graphs. Some comparisons with previous works are included.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.