Abstract

1. Introduction. The problem of extending Dirac's equation of the electron to general relativity has been attacked by many authors, by methods which fall roughly into either of two classes according as the formulation does or does not require the introduction of a local Galilean system of coordinates at each point of space-time. As examples of the former class we mention the methods of Fock (1929) and of Cartan (1938), and as representing the latter class the method described by Ruse (1937). Also, Whittaker (1937) discovered a vector whose vanishing is completely equivalent to the Dirac equations, but this method, unlike the others in the second category, does not apply the Riemannian technique to spinors but only to vectors and tensors derived from these. Now Cartan has denied the possibility of fitting a spinor into Riemannian Geometry if his point of view of spinors is adhered to, and this he argues accounts for the “choquant” properties with which they have been endowed by the geometricians in order to enable them to write down an expression of the usual form for the covariant derivative of a spinor. Consequently, doubt has been cast on the compatibility of the various methods, so in this paper an attempt is made to clarify the matter by working out explicitly the case of the general metric by some of the more important of these methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.