Abstract

A detailed study of ignition mechanisms in aeronautical burners is presented. Even in global lean conditions, liquid fuel injection leads to a strong stratification of the mixture and the whole range of equivalence ratio may be encountered in the burner. The observation of ignition sequences in a representative lab-scale combustion chamber, from both experiment and numerical simulation, reveals a variety of scenarios leading to success or failure. In particular the occurrence of quenching events after the successful creation of a kernel flame is a key mechanism for the outcome of the sequence. A first analysis leads to a classification of ignition/extinction scenarios, based on similar time evolutions and trajectories of the flame kernel. It is found that this classification is much dependent on the sparking location. Then a deeper analysis allows to decompose all scenarios in a succession of more simple, generic mechanisms which are independent of the geometry. This decomposition is a useful tool to describe, understand and predict ignition sequences, being successful or not, in any combustion chamber geometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.