Abstract

Zinc dialkyldithiophosphate additives are used to control wear and inhibit oxidation in almost all engine oils as well as many other types of lubricant. They limit wear primarily by forming a thick, protective, phosphate glass-based tribofilm on rubbing surfaces. This film formation can occur at low temperatures and is relatively indifferent to the chemical nature of the substrate. There has been considerable debate as to what drives ZDDP tribofilm formation, why it occurs only on surfaces that experience sliding and whether film formation is controlled primarily by temperature, pressure, triboemission or some other factor. This paper describes a novel approach to the problem by studying the formation of ZDDP films in full film EHD conditions from two lubricants having very different EHD friction properties. This shows that ZDDP film formation does not require solid–solid rubbing contact but is driven simply by applied shear stress, in accord with a stress-promoted thermal activation model. The shear stress present in a high-pressure contact can reduce the thermal activation energy for ZDDP by at least half, greatly increasing the reaction rate. This mechanism explains the origins of many practically important features of ZDDP films; their topography, their thickness and the conditions under which they form. The insights that this study provides should prove valuable both in optimising ZDDP structure and in modelling ZDDP antiwear behaviour. The findings also highlight the importance of mechanochemistry to the behaviour of lubricant additives in general.

Highlights

  • IntroductionZinc dialkyl- and diaryldithiophosphates (ZDDPs) having the general structure shown in Fig. 1 have been used as antiwear additives for more than 60 years and are still a critical component of almost all modern gasoline and diesel engine lubricants [1]

  • Zinc dialkyl- and diaryldithiophosphates (ZDDPs) having the general structure shown in Fig. 1 have been used as antiwear additives for more than 60 years and are still a critical component of almost all modern gasoline and diesel engine lubricants [1].These additives have been extensively researched, and it is recognised that they form quite thick reaction films on rubbing surfaces, consisting primarily of amorphous zinc phosphate [2, 3]

  • This paper describes an experimental study aimed at showing that ZDDP is controlled by shear stress in accord with the stress-promoted thermal activation model

Read more

Summary

Introduction

Zinc dialkyl- and diaryldithiophosphates (ZDDPs) having the general structure shown in Fig. 1 have been used as antiwear additives for more than 60 years and are still a critical component of almost all modern gasoline and diesel engine lubricants [1]. These additives have been extensively researched, and it is recognised that they form quite thick reaction films on rubbing surfaces, consisting primarily of amorphous zinc phosphate [2, 3]. It has been suggested that ZDDP may react with hard, abrasive iron oxide wear particles to form softer and more benign iron sulphides [5]

Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call