Abstract

High-level single-reference calculations reveal that trimethylphosphine-mediated reductive dimerization of properly substituted (e.g., CF3) ketones proceeds via initial formation of an oxaphosphirane intermediate, with the oxygen atom occupying an equatorial position at phosphorus. In the "oxirane route", this oxaphosphirane intermediate loses a trimethylphosphine oxide unit, thus behaving as a carbene transfer agent toward a second carbonyl molecule and giving rise to a carbonyl ylide that cyclizates to the corresponding oxirane. This in turn transfers the carbene unit to a second phosphine molecule, with loss of acetone, affording a phosphorane. The latter undergoes typical Wittig reaction to the final homocoupling product through the oxaphosphetane intermediate. The alternative direct conversion of oxaphosphirane into phosphorane constitutes the lowest energy path as it skips the highest barrier oxirane → phosphorane conversion. The oxirane route is favored by the use of polar solvents and electron deficient carbonyl components. The lowest barrier most exergonic process from oxaphosphirane is the pericyclic cycloaddition of the acetone C═O bond along the endocyclic P-C bond, furnishing the stable 1,3,2-dioxaphospholane product.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.