Abstract
The combination of pyronin, methyl green, malachite green, crystal violet, and Alcian Blue with a large number of polynucleotides and acidic polysaccharides has been investigated. The “critical electrolyte concentration” approach has been used to provide a measure of affinity between dye and substrate. The interaction of methyl green with DNA, RNA and heparin has been examined spectroscopically. Previously published results are re-examined, and with the new experiments permit consistent interpretations of the specificities of dye binding in terms of modern ideas of nucleic acid and dye structure. All dyestuffs except Alcian Blue bind more strongly to polynucleotides than would be expected if solely electrostatic bonds were present. Pyronin and planar monovalent cationic dyes interact best with polynucleotides in which purine and pyrimidine bases are freely accessible, as in single stranded molecules without extensive secondary structure, such as RNA, denatured DNA, etc. Non-planar triphenylmethane dyes, e.g. methyl green, malachite green etc. bind less strongly to such substrates, but because of their shape they fit well into the secondary structure of native DNA. Tumour RNA and DNA did not differ from “normal” RNA and DNA. By varying the electrolyte concentration, pyronin-methyl green selectivity e.g. for DNA or RNA, can be controlled, and non-nucleotide staining suppressed. The relevance of the new interpretation to the ribonuclease-pyronin technique is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.