Abstract

The [2+2] cycloaddition - retro-electrocyclization (CA-RE) reaction is a "click-like" protocol for facile synthesis of donor-acceptor chromophores from an alkyne and tetracyanoethylene. Herein we shed light on the mechanism of this reaction by detailed kinetics studies using 1 H NMR spectroscopy. By considering several experiments simultaneously, a variety of mechanistic models was evaluated. Surprisingly, a model in which the final 1,1,4,4-tetracyanobuta-1,3-diene product promoted the first step was the only one that described well the experimental data. This autocatalysis model also involved a non-concerted, stepwise formation of the cyclobutene cycloaddition adduct. By proper choice of conditions, we were able to generate the transient cyclobutene in sufficient amount to verify it as an intermediate using 13 C NMR spectroscopy. For its final retro-electrocyclization step, simple first-order kinetics was observed and only minor solvent dependence, which indicates a concerted reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call