Abstract

Enzymes that catalyze the biotransformation of drugs and xenobiotics are generally referred to as drug‐metabolizing enzymes (DMEs). DMEs can be classified into two main groups: oxidative or conjugative. The NADPH‐cytochrome P450 reductase (P450R)/cytochrome P450 (P450) electron transfer systems are oxidative enzymes that mediate phase I reactions, whereas the UDP‐glucuronosyltransferases (UGTs) are conjugative enzymes that mediate phase II enzymes. Both enzyme systems are localized to the endoplasmic reticulum (ER) where a number of drugs are sequentially metabolized. DMEs, including P450s and UGTs, generally have a highly plastic active site that can accommodate a wide variety of substrates. The P450 and UGT genes constitute a supergene family, in which UGT proteins are encoded by distinct genes and a complex gene. Both the P450 and UGT genes have evolved to diversify their functions. This chapter reviews advances in understanding the structure and function of the P450R/P450 and UGT enzyme systems. In particular, the coordinate biotransformation of xenobiotics by phase I and II enzymes in the ER membrane is examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.