Abstract

In homogeneous and density-stratified inviscid shear flows, the mechanism for instability that is most commonly invoked and discussed is Kelvin–Helmholtz instability, as it occurs for a simple velocity discontinuity. There is a second mechanism, the wave-interaction mechanism, which is much more general, and is the subject of this paper. This mechanism depends on two free waves that propagate in opposite directions in a stratified shear flow, and which may become stationary relative to each other because of the shear. If this occurs, and their relative phase is suitably chosen, the velocity field of each wave increases the displacement of the other, and so the disturbance grows.We show that this mechanism is responsible for instability in a general class of symmetric but otherwise arbitrary velocity and density profiles, provided that the Richardson number Ri < ¼ in a central region of arbitrarily small thickness. A critical layer exists in this central region for the growing disturbance, but its role in the instability process is incidental. When Ri > ¼ everywhere, the flow is stable because the free waves described above are absorbed by the critical layer, and hence are heavily damped. The necessary criteria of Rayleigh and Fjortoft for instability in homogeneous fluid are seen to provide a suitable geometry for two interacting waves. Some specific examples are given, including a succinct explanation of Holmboe waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.