Abstract

Fibrinogen dissolved in 0.12 M aqueous NaCl solution at a pH of 6.6 exhibits self-assembly in response to a lowering of the NaCl concentration to values equal to or lower than 60 mM. As has been established in a preceding work (Langmuir 2019, 35, and 12113), a characteristic signature of the self-assembly triggered by a drop in ionic strength is the formation of large globular particles. Growth of these particles most likely obeys a coalescence-like process also termed a step growth process. In order to extend this knowledge, the present work first optimized the protocol, leading to highly reproducible self-assembly experiments. Based on this optimization, the work succeeded in identifying an initial stage, not yet accessible, during which rigid short fibrils grow in close analogy to the thrombin-catalyzed polymerization of fibrin. In addition, first suggestions could be made on the transformation of these fibrils into larger aggregates, which upon drying turn into thick fiber-like ropes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call