Abstract

Bromovinyldeoxyuridine (BVdUrd) is a potent antiherpesvirus compound with low cytotoxicity. To gain an insight into its selectivity and mechanism of inhibition, we chemically synthesized the 5'-triphosphate of BVdUrd, BVdUTP, and tested its effect on the activities of DNA polymerases [DNA nucleotidyltransferase (DNA directed), EC 2.7.7.7] of two herpesviruses--i.e., herpes simplex virus type 1 (HSV-1) and Epstein-Barr virus (EBV)--as well as cellular DNA polymerases alpha, beta, and gamma. The effects on the DNA polymerases were determined under assay conditions optimal for the individual polymerases. We found that the BVdUTP was considerably more inhibityory to the utilization of dTTP by the HSV-1 DNA polymerase then by the cellular DNA polymerases. For instance, as little as 1 microM BVdUTP inhibited the utilization of dTTP by HSV-1 DNA polymerase 50%, whereas the same concentration inhibited the DNA polymerase alpha and the DNA polymerase beta activities only 9% and 3%, respectively. The BVdUTP inhibited DNA synthesis by competing with the natural substrate, dTTP. The Km for dTTP and the Ki for the BVdUTP of the HSV-1 DNA polymerase were 0.66 and 0.25 microM, respectively. Kinetic analyses with the DNA polymerases alpha and beta and the EBV DNA polymerase also reflected a similar difference in sensitivity between the HSV-1 enzyme and other enzymes. Increasing the concentration of either the DNA template or the enzyme in the reaction mixture did not bring about a significant change in the extent of inhibition. Preincubation of the inhibitor with the enzyme was not necessary for inhibition. Studies on time course of inhibition revealed that the compound is inhibitory even after the initiation of DNA synthesis. These studies indicate that the ability of BVdUTP to preferentially inhibit the HSV-1 DNA polymerase may contribute towards its selective inhibition of the viral DNA replication in infected cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.