Abstract

The erosive structures formed on a tungsten cathode as a result of the motion of the cathode spot of a vacuum arc over the cathode surface have been examined. It has been found that the average mass of a cathode microprotrusion having the shape of a solidified jet is approximately equal to the mass of ions removed from the cathode within the lifetime of a cathode spot cell carrying a current of several amperes. The time of formation of a new liquid-metal jet under the action of the reactive force of the plasma ejected by the cathode spot is about 10 ns, which is comparable to the lifetime of a cell. The growth rate of a liquid-metal jet is ∼104 cm/s. The geometric shape and size of a solidified jet are such that a new explosive emission center (spot cell) can be initiated within several nanoseconds during the interaction of the jet with the dense cathode plasma. This is the underlying mechanism of the self-sustained operation of a vacuum arc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.