Abstract

Abstract North Atlantic decadal climate variability is studied with a coupled atmosphere–ocean–sea ice model (ECBILT). After having reached an approximate statistical equilibrium in coupled mode without applying flux corrections, a subsequent 1000-yr integration is performed and analyzed. Compared to the current climate, the surface temperatures are 2°C warmer in the Tropics to almost 8°C warmer in the polar regions. The covariability between the atmosphere and ocean is explored by performing a singular value decomposition (SVD) of boreal winter SST anomalies and 800-hPa geopotential height anomalies. The first SVD pair shows a red variance spectrum in SST and a white spectrum in 800-hPa height. The second mode shows a peak in both spectra at a timescale of about 16–18 yr. The geopotential height pattern is the model’s equivalent of the North Atlantic oscillation (NAO) pattern; the SST anomaly pattern is a north–south oriented dipole. Additional experiments have revealed that the decadal oscillation in EC...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call