Abstract

Numerical simulations demonstrated that small additives of propane to rich hydrogen-air mixtures suppress the formation of HO2 and OH in the low-temperature region of the flame zone, thereby causing a substantial decrease in the laminar flame speed. In the low-and high-temperature regions, propane interacts predominantly with OH and H, respectively. In the flame zone, propane is completely converted to CO, CO2, CH4, C2H2, H2, and H2O, being oxidized concurrently with hydrogen at that.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.