Abstract

AbstractGeneration of carbon centered radicals from organic halides represents a powerful tool in modern organic chemistry, especially in the context of photoredox catalysis. However, activation of carbon–halogen bonds is usually promoted by toxic and hazardous tin reagents. Alternatively, α‐aminoalkyl radicals have emerged as a cheap and efficient halogen atom transfer (XAT) reagents, although the activation mechanism is still underexplored with respect to hydrogen atom transfer (HAT) chemistry. Herein, we report a computational systematic evaluation of four different α‐aminoalkyl radicals on the Halogen Atom Transfer (XAT) mechanism. We have evaluated up to 32 reactions, including two different types of substrates (Ph−X and Cy−X). This systematic study aims to provide a big picture on the key effects in this reactivity including the hybridization of carbon, the nature of the halogen, and the electronics/sterics of the α‐aminoalkyl radical.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call