Abstract

In highly subcooled nucleate boiling the bubbles grow and collapse while sliding along the heated surface, so that there is no net vapor transport away from the surface. A long-standing question exists as to whether conduction and convection between the bubbles, or latent heat transport through the bubbles, is the dominant heat transfer mechanism. It is shown here by simple calculations that the sliding of the bubble results in augmentation of microlayer evaporation under the bubble by a factor of two or more over a stationary bubble with a continuous microlayer. It appears therefore that the latent heat transport mechanism may be dominant at large bulk subcoolings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.