Abstract

The effect of carboxylated cellulose nanofiber (CCNF) on the firefighting foam stability and stabilization mechanism is investigated. The results show that equilibrium surface tension of CTAB/FC1157 solution decreases when CCNF concentration increases to 0.5 wt%, while CCNF has little effect on that of SDS/FC1157 solution. Besides, when CCNF concentration increases to 1.0 wt%, the foam initial drainage of SDS/FC1157 solution is delayed for about 3 min. Increasing CCNF concentration can slow down foam coarsening process and liquid drainage process of SDS/FC1157 and CTAB/FC1157 solutions, improving the foam stability. The foam stability enhancement of CTAB/FC1157-CCNF solution is due to the formation of bulk aggregates and the increase of viscosity. However, the foam stability enhancement of SDS/FC1157-CCNF solution may be caused by the increase of viscosity. CCNF significantly reduces the foaming ability of CTAB/FC1157 solution when CCNF concentration is >0.5 wt%. Nevertheless, the foaming ability of SDS/FC1157 solution decreases significantly when CCNF concentration reaches 3.0 wt%, and its foaming ability remains higher than CTAB/FC1157 solution. The foaming ability of SDS/FC1157-CCNF solution is mainly dominated by viscosity, while that of CTAB/FC1157-CCNF solution is dominated by viscosity and adsorption kinetics. Adding CCNF is expected to enhance the stability of firefighting foam and increase the efficiency of extinguishing fire.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call