Abstract

Sodium azide (NaN3), a well-known inhibitor of mitochondrial respiration, stimulated bud-dormancy release in grapevines similar to hydrogen cyanamide (HC), while HC, a well-known dormancy release agent, inhibited the O2 uptake in isolated grape bud mitochondria similarly to NaN3. Additionally, both chemicals induced transcript expression of the antioxidative enzyme glutathione reductase and glucose-6-phosphate-dehydrogenase (G6PD), therefore upregulated the ascorbate-glutathione cycle (AGC) and the pentose phosphate pathway, respectively. As a result of AGC activation, the ratio of reduced to oxidized glutathione (GSH/GSSG) increased. Both stimuli also upregulated the transcription of 1,3-β-d-glucanase, a key enzyme in dormancy release. Together, these data support mechanistic connection between impaired Mit function and dormancy release, and suggests that as a consequence of O2 deprivation, increases in glycolysis and in ethanolic fermentation could be responsible for activation of downstream stages in the dormancy release mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call