Abstract
The physical mechanism of detonation combustion of nanostructured silicon with a solid-phase oxidant at a velocity of the combustion front of 1000–3000 m/s has been proposed. Thermodynamic characteristics of combustion of model solid-phase mixtures “silicon–ammonium perchlorate” with different equivalent ratios of their components have been calculated at different pressures. It has been established that a characteristic feature of detonation combustion of nanostructured silicon with a solid-phase oxidant is the stationary velocity of motion of the detonation front with a significant defect (10–15%) with respect to the Chapman–Jouguet detonation velocity. The detonation (supersonic) and subsonic regimes of combustion of nanostructured silicon with a solid-phase oxidant have been determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.