Abstract

Helicon plasma density may show a non-monotonic dependence on the magnetic field at low strength, so-called “low-field peak (LFP).” We presented the multiple LFPs and the formation mechanism in argon helicon plasmas in this paper. Propagating conditions of helicon (H) and Trivelpiece–Gould (TG) waves in collisional plasmas were calculated based on the dispersion relation. It is demonstrated that there are two mechanisms during mode transition responsible for LFP, i.e., resonance of H- and TG-waves and anti-resonance of TG-wave. Especially, H-TG resonance of the highest axial mode in the helicon plasma results in a density jump rather than a density peak due to the mode transition from non-wave to co-H/TG-wave mode. Higher plasma density in lower magnetic fields is helpful for achievement of multiple LFPs in argon helicon plasmas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call