Abstract
Barium can induce spontaneous activity in cardiac non-pacemaker cells. The mechanism of barium induced diastolic depolarisation was studied in isolated ventricular myocytes, using a microelectrode technique. Barium (0.05-0.2 mmol.litre-1) decreased resting potential and caused the membrane potential at the end of the action potential to undershoot the diminished resting value temporarily, thereby inducing diastolic depolarisation. Resting membrane resistance was increased by Ba but at the end of phase 3 repolarisation the resistance temporarily decreased below its steady state diastolic value. In presence of Ba, hyperpolarisation abolished or reversed diastolic depolarisation. At the end of phase 3 repolarisation, membrane resistance was decreased, whether diastolic depolarisation was present, absent or reversed. A high [K]o (15.4 mmol.litre-1) decreased Ba effects on action potential, membrane resistance and diastolic depolarisation. Caesium decreased the Ba induced diastolic depolarisation and the associated increase in membrane resistance, but had little effect on spontaneous activity at depolarised levels. Barium induced an oscillatory potential, with increased membrane resistance. Noradrenaline plus low [Ba]o, and high [Ba]o alone (1-5 mmol.litre-1), can induce spontaneous activity. Thus, in myocardial cells barium induces diastolic depolarisation at polarised levels by a voltage and time dependent block of potassium conductance, which is modulated by action potential voltage changes. However, as [Ba]o is increased, spontaneous activity at a depolarised level may be related to the decay of potassium currents and to oscillatory potentials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.