Abstract

A study is presented of the effect of acidic uncouplers and oligomycin on energy-linked and passive proton translocation, oxidative phosphorylation, and energy-linked nicotinamide-adenine-nucleotide transhydrogenase in EDTA submitochondrial particles from beef-heart. A flow potentiometric technique has been applied to resolve the kinetics of the initial rapid phase of the redox proton pump. Rapid kinetics analysis shows that carbonyl-cyanide-p-trifluoromethoxyphenyl-hydrazone (FCCP) does not exert any direct effect on redox-linked active proton transport. The uncoupling action of FCCP on oxidative phosphorylation and energy-linked transhydrogenase is shown to be quantitatively accounted for by its promoting effect of passive proton-diffusion across the mitochondrial membrane. Oligomycin depresses passive proton diffusion in EDTA sonic particles and this effect accounts for the coupling action exerted by the antibiotic on oxidative phosphorylation and energy-linked transhydrogenase. In fact, rapid kinetic analysis demonstrates that oligomycin does not directly affect the redox-linked proton pump. The present results show that there does not exist any labile intermediate in the redox-linked proton pump which is sensitive to acidic uncouplers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.