Abstract
We construct a diffusive, bi-stable cellular automata model to elucidate the physical mechanisms underlying observed edge localized mode (ELM) mitigation by supersonic molecular beam injection (SMBI). The extended cellular automata model reproduces key qualitative features of ELM mitigation experiments, most significantly the increase in frequency of grain ejection events (ELMs), and the decrease in the number of grains ejected by these transport events. The basic mechanism of mitigation is the triggering of small scale pedestal avalanches by additional grain injection directly into the H-mode pedestal. The small scale avalanches prevent the gradient from building-up to marginality throughout the pedestal, thus avoiding large scale transport events which span the full extent of that region. We explore different grain injection parameters to find an optimal SMBI scenario. We show that shallow SMBI deposition is sufficient for ELM mitigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.