Abstract

Since the classical continuum theories are insufficient to account the small size effects of nanobeams, the nonlocal continuum theories such as Eringen's nonlocal elasticity theory, couple stress theory, strain gradient theory and surface elasticity theory have been proposed by researchers to predict the accurate structural response of isotropic and functionally graded composite nanobeams. This review focuses on research work concerned with analysis of size dependent nanoscale isotropic and functionally graded beams using classical and refined beam theories based on Eringen's nonlocal elasticity theory. The present review article also highlight the possible scope for the future research on nanobeams. In the present study, the authors have developed a new hyperbolic shear deformation theory for the analysis of isotropic and functionally graded nanobeams. The theory satisfy the traction free boundary conditions at the top and the bottom surfaces of the nanobeams. Analytical solutions for the bending, buckling and free vibration analysis of simply-supported nanobeams are obtained using the Navier method. To ensure that the present theory is accurate and valid, the results are compared to previous research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.